References

Pages on which each reference is cited are given in square brackets.


Author index

Abraham, B., 292
Abramowitz, M., 332
Agrawal, N., 315
Akaike, H., 15, 114, 115, 220
Akram, M., 157, 161, 164, 169, 265, 268, 272
Allen, P. G., 245
Andersen, T. G., 334
Anderson, A., 36
Anderson, B. D. O., 14, 15, 222, 227, 298
Anderson, H. M., 337, 338, 344, 345
Anderson, T. W., 154, 184, 207
Ansley, C. F., 208
Aoki, M., 14, 15
Archibald, B. C., 24, 136, 157, 161, 164
Assimakopoulos, V., 23, 56
Athanasopoulos, G., 303
Bachelier, L., 337
Bell, W. R., 232
Bera, A. K., 154
Beveridge, S., 333, 337, 338, 344
Billah, B., 48, 118, 119, 120, 148
Black, F., 327
Bollerslev, T., 329, 333
Boschan, C., 333
Bowerman, B. L., 24
Bowman, K. O., 154
Box, G. E. P., 141, 151, 161, 164, 166, 174
Brace, C., 248
Brockwell, P. J., 45
Brown, R. G., 13, 21, 22, 40, 257
Caines, P., 222
Campbell, J., 339, 340
Canova, F., 333
Carbone, R., 26
Chan, K. S., 288
Charnes, A., 233
Chatfield, C., 83, 91, 92, 98
Chen, C. C., 544
Clarida, R. H., 343
Cooper, W. W., 235
Cottet, R., 248
Cox, D. R., 73
Croston, J. D., 288, 291, 292, 294
Darling, D. A., 154
Davis, R. A., 22
de Jong, P., 208, 222
de Kok, T. G., 289, 290
de Silva, A., 81, 209, 230, 288, 295
Deistler, M., 141, 151, 160, 227
DeSutels, P. A., 289
Doornik, J. A., 154
Duncan, D. B., 15
Durbin, J., 15
Engle, R. F., 248, 303, 329
Feigin, P. D., 288
Fernandes, C., 288, 289
<table>
<thead>
<tr>
<th>Name</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fildes, R.</td>
<td>36, 56</td>
</tr>
<tr>
<td>Flannery, B. P.</td>
<td>13, 324</td>
</tr>
<tr>
<td>Forbes, C. S.</td>
<td>161, 208</td>
</tr>
<tr>
<td>Franses, P. H.</td>
<td>119, 56</td>
</tr>
<tr>
<td>Friedman, M.</td>
<td>336</td>
</tr>
<tr>
<td>Gallant, A. R.</td>
<td>76</td>
</tr>
<tr>
<td>Gardner, E. S., Jr.</td>
<td>13, 20, 23, 300</td>
</tr>
<tr>
<td>Gentleman, W. M.</td>
<td>215</td>
</tr>
<tr>
<td>Genton, M. G.</td>
<td>315</td>
</tr>
<tr>
<td>Geweke, J. F.</td>
<td>115</td>
</tr>
<tr>
<td>Ghosh, S. K.</td>
<td>315</td>
</tr>
<tr>
<td>Gijbels, I.</td>
<td>321</td>
</tr>
<tr>
<td>Gilchrist, W. G.</td>
<td>289</td>
</tr>
<tr>
<td>Golub, G. H.</td>
<td>194, 213, 215</td>
</tr>
<tr>
<td>Gould, P.</td>
<td>247, 288</td>
</tr>
<tr>
<td>Granger, C. W. J.</td>
<td>223, 248, 304, 305</td>
</tr>
<tr>
<td>Graves, S. C.</td>
<td>95, 313, 322</td>
</tr>
<tr>
<td>Grose, S.</td>
<td>17, 20, 23, 51, 56, 81, 86, 122, 266, 271</td>
</tr>
<tr>
<td>Grunwald, G. K.</td>
<td>240</td>
</tr>
<tr>
<td>Hamilton, J. D.</td>
<td>76, 78, 337</td>
</tr>
<tr>
<td>Hamza, K.</td>
<td>290</td>
</tr>
<tr>
<td>Hannan, E. J.</td>
<td>13, 14, 15, 114, 115, 138, 160, 227</td>
</tr>
<tr>
<td>Hansen, H.</td>
<td>154</td>
</tr>
<tr>
<td>Harrison, P. J.</td>
<td>315, 63, 91, 98, 220, 223, 313</td>
</tr>
<tr>
<td>Harvey, A. C.</td>
<td>15, 143, 152, 153, 155, 184, 210, 19, 220, 222, 231, 232, 239, 280, 309, 327, 334, 335</td>
</tr>
<tr>
<td>Havenner, A.</td>
<td>157</td>
</tr>
<tr>
<td>Heinen, A.</td>
<td>288</td>
</tr>
<tr>
<td>Heligman, L.</td>
<td>335</td>
</tr>
<tr>
<td>Hendry, D. F.</td>
<td>504</td>
</tr>
<tr>
<td>Hibon, M.</td>
<td>541, 113, 116, 117, 119, 254</td>
</tr>
<tr>
<td>Hillmer, S. C.</td>
<td>232</td>
</tr>
<tr>
<td>Holt, C. C.</td>
<td>13, 23, 23, 52</td>
</tr>
<tr>
<td>Horn, S. D.</td>
<td>157</td>
</tr>
<tr>
<td>Hull, J.</td>
<td>328</td>
</tr>
<tr>
<td>Hurvich, C. M.</td>
<td>115</td>
</tr>
<tr>
<td>Hyndman, R. J.</td>
<td>33, 17, 19, 23, 24, 31</td>
</tr>
<tr>
<td></td>
<td>53, 54, 56, 58, 51, 83, 85, 86, 98</td>
</tr>
<tr>
<td></td>
<td>114, 119, 122, 126, 137, 161, 163, 169</td>
</tr>
<tr>
<td></td>
<td>237, 265, 266, 268, 271, 272, 290, 292</td>
</tr>
<tr>
<td></td>
<td>297, 299, 302, 303, 308, 309</td>
</tr>
<tr>
<td>Jarque, C. M.</td>
<td>154</td>
</tr>
<tr>
<td>Jazwinski, A. H.</td>
<td>13</td>
</tr>
<tr>
<td>Jenkins, G. M.</td>
<td>13, 14, 17, 19, 171, 172, 175, 176, 223, 289</td>
</tr>
<tr>
<td>Johansen, S.</td>
<td>313</td>
</tr>
<tr>
<td>Johnston, F. R.</td>
<td>31, 38, 291, 313</td>
</tr>
<tr>
<td>Jung, R. C.</td>
<td>298</td>
</tr>
<tr>
<td>Kalman, R. E.</td>
<td>15, 18, 77</td>
</tr>
<tr>
<td>Kendall, M. G.</td>
<td>227</td>
</tr>
<tr>
<td>Kim, C. J.</td>
<td>345</td>
</tr>
<tr>
<td>King, R. G.</td>
<td>516</td>
</tr>
<tr>
<td>Koehler, A. B.</td>
<td>15, 17, 20, 23, 24, 31, 33</td>
</tr>
<tr>
<td></td>
<td>34, 36, 81, 83, 86, 88, 92, 95, 114, 116, 122, 126, 136, 247, 248, 260, 271, 313</td>
</tr>
<tr>
<td>Kohn, R.</td>
<td>208, 222</td>
</tr>
<tr>
<td>Koning, A. J.</td>
<td>119</td>
</tr>
<tr>
<td>Koopman, S. J.</td>
<td>15, 231</td>
</tr>
<tr>
<td>Kukuk, M.</td>
<td>288</td>
</tr>
<tr>
<td>Lawton, R.</td>
<td>161</td>
</tr>
<tr>
<td>Ledolter, J.</td>
<td>288, 292</td>
</tr>
<tr>
<td>Leeds, M.</td>
<td>223, 229</td>
</tr>
<tr>
<td>Lewandowski, R.</td>
<td>36</td>
</tr>
<tr>
<td>Liesenfeld, R.</td>
<td>288</td>
</tr>
<tr>
<td>Lilliefors, H. W.</td>
<td>1154</td>
</tr>
<tr>
<td>Ljung, G. M.</td>
<td>153</td>
</tr>
<tr>
<td>Low, C. N.</td>
<td>337, 338, 344, 345</td>
</tr>
<tr>
<td>Lütkepohl, H.</td>
<td>267, 309</td>
</tr>
<tr>
<td>Makridakis, S.</td>
<td>19, 24, 54, 56, 80, 88, 112, 116, 117, 254</td>
</tr>
<tr>
<td>Mankiw, N. G.</td>
<td>339, 340</td>
</tr>
<tr>
<td>Martin, G. M.</td>
<td>289</td>
</tr>
<tr>
<td>Mayne, D.</td>
<td>223</td>
</tr>
<tr>
<td>McClain, J. O.</td>
<td>104</td>
</tr>
<tr>
<td>McKenzie, E.</td>
<td>23, 113, 231, 308</td>
</tr>
<tr>
<td>Meddahi, N.</td>
<td>132</td>
</tr>
<tr>
<td>Meese, R. A.</td>
<td>115</td>
</tr>
<tr>
<td>Merton, R. C.</td>
<td>327</td>
</tr>
<tr>
<td>Miller, M.</td>
<td>337</td>
</tr>
<tr>
<td>Moore, J. B.</td>
<td>13, 15, 222, 227, 295</td>
</tr>
<tr>
<td>Morgan, F.</td>
<td>107</td>
</tr>
<tr>
<td>Morley, J. C.</td>
<td>337, 340, 345</td>
</tr>
<tr>
<td>Morzuch, B. J.</td>
<td>334</td>
</tr>
<tr>
<td>Muth, J. F.</td>
<td>14</td>
</tr>
<tr>
<td>Nahmias, S.</td>
<td>315</td>
</tr>
<tr>
<td></td>
<td>344</td>
</tr>
<tr>
<td>Author</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Nelson, D. B.</td>
<td>330</td>
</tr>
<tr>
<td>Newbold, P.</td>
<td>223, 305, 337, 344</td>
</tr>
<tr>
<td>Newton, J.</td>
<td>26</td>
</tr>
<tr>
<td>Nikolopoulos, K.</td>
<td>25, 56</td>
</tr>
<tr>
<td>O’Connell, R. T.</td>
<td>24</td>
</tr>
<tr>
<td>Ord, J. K.</td>
<td>15, 17, 24, 85, 86, 88, 92, 98, 156, 237, 248, 265, 268, 273, 276, 277, 287, 313</td>
</tr>
<tr>
<td>Ouwehand, P.</td>
<td>297</td>
</tr>
<tr>
<td>Paige, C. C.</td>
<td>137</td>
</tr>
<tr>
<td>Park, J. W.</td>
<td>315</td>
</tr>
<tr>
<td>Parzen, E.</td>
<td>56</td>
</tr>
<tr>
<td>Pearlman, J. G.</td>
<td>129</td>
</tr>
<tr>
<td>Pegels, C. C.</td>
<td>23</td>
</tr>
<tr>
<td>Peterson, R.</td>
<td>315</td>
</tr>
<tr>
<td>Plosser, C. I.</td>
<td>335, 345</td>
</tr>
<tr>
<td>Pollard, J. H.</td>
<td>335</td>
</tr>
<tr>
<td>Pope, A.</td>
<td>239</td>
</tr>
<tr>
<td>Potter, S.</td>
<td>337</td>
</tr>
<tr>
<td>Press, W. H.</td>
<td>324</td>
</tr>
<tr>
<td>Proietti, T.</td>
<td>232, 339</td>
</tr>
<tr>
<td>Pyke, D. F.</td>
<td>313</td>
</tr>
<tr>
<td>Quinn, B.</td>
<td>114, 115</td>
</tr>
<tr>
<td>Ramanathan, R.</td>
<td>248</td>
</tr>
<tr>
<td>Rebelo, S.</td>
<td>346</td>
</tr>
<tr>
<td>Reinsel, C. C.</td>
<td>14, 44, 77, 120, 175, 176, 223, 230</td>
</tr>
<tr>
<td>Roberts, S. A.</td>
<td>133, 169</td>
</tr>
<tr>
<td>Robinson, P. M.</td>
<td>315</td>
</tr>
<tr>
<td>Ruiz, E.</td>
<td>334</td>
</tr>
<tr>
<td>Saunders, M. A.</td>
<td>137</td>
</tr>
<tr>
<td>Scholes, M.</td>
<td>327</td>
</tr>
<tr>
<td>Schott, J. R.</td>
<td>241</td>
</tr>
<tr>
<td>Schwarz, G.</td>
<td>114, 115</td>
</tr>
<tr>
<td>Schwepppe, F.</td>
<td>192, 221</td>
</tr>
<tr>
<td>Shenstone, L.</td>
<td>427</td>
</tr>
<tr>
<td>Shenton, L. R.</td>
<td>115</td>
</tr>
<tr>
<td>Shephard, N.</td>
<td>324</td>
</tr>
<tr>
<td>Shibata, R.</td>
<td>115</td>
</tr>
<tr>
<td>Shiryaev, A. N.</td>
<td>272</td>
</tr>
<tr>
<td>Shockor, J. H.</td>
<td>292</td>
</tr>
<tr>
<td>Silver, E. A.</td>
<td>318</td>
</tr>
<tr>
<td>Silverman, B. W.</td>
<td>87</td>
</tr>
<tr>
<td>Sims, C. A.</td>
<td>303</td>
</tr>
<tr>
<td>Smart, C. N.</td>
<td>292</td>
</tr>
<tr>
<td>Smith, M.</td>
<td>245</td>
</tr>
<tr>
<td>Smith, S. A.</td>
<td>315</td>
</tr>
<tr>
<td>Solow, R. M.</td>
<td>336</td>
</tr>
<tr>
<td>Stegun, I. A.</td>
<td>332</td>
</tr>
<tr>
<td>Stekler, H. O.</td>
<td>112</td>
</tr>
<tr>
<td>Stevens, C. F.</td>
<td>15</td>
</tr>
<tr>
<td>Stirling, W. D.</td>
<td>194, 215</td>
</tr>
<tr>
<td>Stock, J. H.</td>
<td>336, 346</td>
</tr>
<tr>
<td>Stuart, A.</td>
<td>263, 273, 276, 277, 287</td>
</tr>
<tr>
<td>Sugiyama, N.</td>
<td>114, 115</td>
</tr>
<tr>
<td>Sweet, A. L.</td>
<td>161</td>
</tr>
<tr>
<td>Syntetos, A. A.</td>
<td>291, 292</td>
</tr>
<tr>
<td>Taylor, J. W.</td>
<td>26, 72, 237, 240, 255</td>
</tr>
<tr>
<td>Taylor, M. P.</td>
<td>344</td>
</tr>
<tr>
<td>Teräsvirta, T.</td>
<td>337</td>
</tr>
<tr>
<td>Teukolsky, S. A.</td>
<td>123</td>
</tr>
<tr>
<td>Thomas, L. J.</td>
<td>162</td>
</tr>
<tr>
<td>Tiao, G. C.</td>
<td>227</td>
</tr>
<tr>
<td>Tsai, C.</td>
<td>115</td>
</tr>
<tr>
<td>Tsay, R. S.</td>
<td>149, 230, 334</td>
</tr>
<tr>
<td>Tsay, W. J.</td>
<td>244</td>
</tr>
<tr>
<td>Vahid-Araghi, F.</td>
<td>249, 248</td>
</tr>
<tr>
<td>Vahid, F.</td>
<td>303</td>
</tr>
<tr>
<td>van Donselaar, K. H.</td>
<td>299</td>
</tr>
<tr>
<td>Van Loan, C. F.</td>
<td>194, 215, 218</td>
</tr>
<tr>
<td>Vetterling, W. T.</td>
<td>324</td>
</tr>
<tr>
<td>Wallis, K. F.</td>
<td>224</td>
</tr>
<tr>
<td>Wand, M. P.</td>
<td>232</td>
</tr>
<tr>
<td>Watson, M. W.</td>
<td>309, 336, 340</td>
</tr>
<tr>
<td>West, M.</td>
<td>15, 53, 220</td>
</tr>
<tr>
<td>Wheelwright, S. C.</td>
<td>19, 24, 50, 56</td>
</tr>
<tr>
<td>White, A.</td>
<td>328</td>
</tr>
<tr>
<td>Willemain, T. R.</td>
<td>292</td>
</tr>
<tr>
<td>Williams, D.</td>
<td>272</td>
</tr>
<tr>
<td>Winkler, R.</td>
<td>36</td>
</tr>
<tr>
<td>Winters, P. R.</td>
<td>13, 23, 24, 239</td>
</tr>
<tr>
<td>Working, H.</td>
<td>322, 334</td>
</tr>
<tr>
<td>Yar, M.</td>
<td>97, 98</td>
</tr>
<tr>
<td>Young, P.</td>
<td>156</td>
</tr>
<tr>
<td>Yurkiewicz, J.</td>
<td>4</td>
</tr>
<tr>
<td>Zarnowitz, V.</td>
<td>336</td>
</tr>
<tr>
<td>Zellner, A.</td>
<td>297</td>
</tr>
<tr>
<td>Zivot, E.</td>
<td>340, 345</td>
</tr>
</tbody>
</table>
annual US net electricity generation, 11
annual US new freight cars, 280–281
hourly utility demand, 248–255
hourly vehicle counts, 480–484
M3 competition data, 117–122
monthly Australian overseas visitors, 11
monthly Canadian gas production, 139
monthly copper prices, 340
monthly Dow Jones Index, 241–242, 330–332
monthly exchange rates, 306–309
monthly hospital patient count, 123–124
monthly product sales, 325
monthly sales car parts, 293–296
monthly US civilian unemployment, 156
monthly US consumer confidence, 156
monthly US domestic enplanements, 156
monthly US gasoline prices, 149–151, 333–334
monthly US government bond yields, 11, 36, 102
quarterly Australian GDP, 78–80, 340–344
quarterly French exports, 86–88
quarterly UK GDP, 340–344
quarterly UK passenger vehicle production, 11, 36, 102
quarterly US GDP, 82
quarterly US GNP, 340–344
Watson macroeconomic database, 309
weekly FM sales, 147–149
weekly jewelry sales, 282–284
Subject index

accuracy of forecast, 33–34
additive error models, 25, 27–29
aggregate demand, see lead-time demand
AIC, 35, 114, 116, 120, 122, 123, 126, 203
AICc, 113, 115, 124
airline model, 176, 179
Akaike’s Information Criterion, see AIC and AICc
ARCH/GARCH models, 329–333
ARIMA models, 171–185, 204, 223
autocovariance generating function, 230
automatic forecasting, 35–36
autoregressive conditional heteroscedastic models, see ARCH/GARCH models
Bayesian Information Criterion, see BIC
Bernoulli distribution, 292
Beveridge-Nelson decomposition, 222
BIC, 35, 114, 116, 124
Black-Scholes model, 328, 329
Box-Ljung-Pierce statistic, 153, 154
Brown’s double exponential smoothing, 22
Brownian motion, 328
business cycle, 18, 335, 337, 342, 344
see also cycle
canonical model, 219, 220
Cauchy distribution, 268
causal stationarity, 172, 173
see also stationarity
censored data, 314, 315
see also stationarity
cointegrated models, 304
composite models, 55
conditional heteroscedasticity, 327–334
convergence of estimates, 76, 223, 224, 225
convergence to zero problem, 269, 276
count data, 287, 296
Croston’s method, 281, 291, 292
cycle, 18, 22, 33, 33, 33, 33, 33
Cyclical models, 184, 185
damped level model, 35, 188, 128
damped trend, 15, 20, 23, 56, 59, 73, 174
116, 119, 122, 124, 125, 126, 130, 132
136, 138, 191, 193, 195, 196, 198, 204
205, 206, 207, 208, 209, 210
303, 306, 311
damping matrix, 300
demand data, 291, 313
differencing, 175, 176, 180, 204
discount matrix, 153, 156, 160, 162, 170
discounted sum of squared errors, 289
double exponential smoothing, 22
double seasonal method, 239, 241, 246
drift, 235, 335, 336, 338, 344
see also local level model with drift, see also random walk with drift dummy variable, see indicator variable dynamic linear models, 13

efficient market hypothesis, 66, 327
EGARCH models, 330
empirical information criterion, see LEIC
estimability, 13, 219
estimation, 32, 75–82, 138, 147, 220–223, 247, 293, 300–302, 330, see also heuristic estimation, see also least squares estimation, see also maximum likelihood estimation, see also optimization
ETS notation, 25
ETS(A,A,M), 29, 74, 84, 118, 266
ETS(A,A,N), 29, 36, 56, 59, 84, 89, 90, 99, 102, 103, 106, 118, 120, 122, 125, 158, 162, 163, 170
ETS(A,A_d,A), 29, 84, 89, 90, 99, 102, 103, 106, 112, 115, 119, 131, 135, 158, 162
ETS(A,A_d,M), 29, 102, 103, 106, 118, 120, 122, 125, 135, 162, 163, 170
ETS(A,M,A), 29, 84, 118, 266
ETS(A,M,M), 29, 84, 118, 266
ETS(A,M,N), 29, 84, 118, 266
ETS(A,M_d,M), 29, 84, 118, 266
ETS(A,M_d,N), 29, 84, 118, 266
ETS(A,N,A), 29, 84, 118, 266
ETS(A,N,M), 29, 84, 118, 266
ETS(A,N,N), 29, 84, 118, 266
ETS(M,A,A), 30, 84, 89, 91, 115

ETS(M,A,M), 30, 84, 89, 91, 115
ETS(M,A,N), 30, 84, 89, 91, 115
ETS(M,M,A), 30, 84, 118, 266
ETS(M,M,M), 30, 84, 118, 266
ETS(M,M,N), 30, 84, 118, 266
ETS(M,M_d,A), 30, 84, 118, 266
ETS(M,M_d,M), 30, 84, 118, 266
ETS(M,M_d,N), 30, 84, 118, 266
ETS(M,N,A), 30, 84, 91, 115
ETS(M,N,M), 30, 84, 91, 115
ETS(M,N,N), 30, 84, 91, 115

exponentially weighted moving average, 21, 30, 289, 291, 292

fast Givens transformation, 194, 210
fill rate, 324, 329
finite start-up assumption, 42, 55, 172, 187, 191, 192, 208
forecast, see point forecast
forecast accuracy, 33–34
forecasting method, 12, 20
forecasting software, 3

gamma distribution, 275–277
GARCH, see ARCH/GARCH models
Gaussian elimination, 211, 212
general exponential smoothing, 43, 77
Subject index

- global trend, 51, 66
- goodness-of-fit measures, 152, 153
- Granger-Newbold theorem, 223, 224
- group seasonality, 299, 300
- growth cycles, 336, 337
- Hannan-Quinn information criterion, see HQIC
- heteroscedasticity, 62, 73, 85, 91, 147, 155, 324
- heuristic estimation, 31, 32, 79–81
- history of exponential smoothing, 13–14
- Hodrick-Prescott filter, 335
- Holt’s method, 13, 20, 22, 23, 27–28, 52, 177
- HQIC, 113, 115, 124
- identifiability, 241, 256
- IGARCH models, 329
- indicator variable, 145, 148, 156, 241, 243, 259, 261
- infinite start-up assumption, 22, 172
- infinite variance problem, 267, 269
- information criteria, 25, 113, 116
- innovations state space models, see innovations state space models
- local level model, 47, 50, 59, 62, 65, 66
- MAE, 33, 34
- MAPE, 33, 34
- Kalman filter, 63, 187, 209, 238, 220, 222
- Kalman gain, 187
- kernel density estimation, 87
- kernel smoothing, 232
- Kullback-Leibler distance, 115
- lag operator, 159, 171
- lead-time, 314
- stochastic, 101, 102
- lead-time demand, 88
- lead-time demand forecasts, 31, 85, 89, 98, 102
- leading indicators, 147, 159, 161
- least squares estimation, 78, 89
- likelihood, 30, 29, 46, 172, 259, 261
- linear innovations state space models, see innovations state space models
- local negative binomial model, 289, 290
- local Poisson model, 280, 289
- local trend model, 26, 85, 33, 56, 65, 67
- MAE, 33, 34
- MAPE, 33, 34
- leading indicators, 147, 159, 161
- least squares estimation, 78, 89
- likelihood, 30, 29, 46, 172, 259, 261
- linear innovations state space models, see innovations state space models
- local level model, 47, 50, 59, 62, 65, 66
- MAE, 33, 34
- MAPE, 33, 34
- leading indicators, 147, 159, 161
- least squares estimation, 78, 89
- likelihood, 30, 29, 46, 172, 259, 261
- linear innovations state space models, see innovations state space models
- local negative binomial model, 289, 290
- local Poisson model, 280, 289
- local trend model, 26, 85, 33, 56, 65, 67
- MAE, 33, 34
- MAPE, 33, 34
- MAE, 33, 34
- M3 competition, 34, 36, 81, 113, 116–122, 124, 125, 254, 280
- macroeconomic database, 309
- MAE, 33, 34
- MAPE, 33, 34
Markov switching, 337, 344, 345
martingales, 272, 328, 330
MASE, 34, 116, 117, 261, 295, 296
maximum likelihood estimation, 32, 272, 193, 221, 281, 295, 296
see also likelihood
quasi, 28
mean absolute error, see MAE
mean absolute percentage error, see MAPE
mean absolute scaled error, see MASE
mean squared error, see MSE
measurement equation, 14, 42, 218, 220
METS (modified ETS) model, 272, 274–276, 278, 279
minimum dimension models, 157–160
model classes, 34, 35, 266, 267
model selection, 38, 113, 127, 203, 204
model, statistical, 13
MSOE state space models, 15, 217, 255
multiple seasonality, 237, 263
model restrictions, 245, 247
multiple sources of error, see MSOE
state space models
multiplicative error models, 25, 27, 28, 270–277
multivariate exponential smoothing, 297, 310
negative binomial distribution, 287
negative entropy, 115
nonlinear state space models, 14, 61, 241
normalization, 131, 144, 159, 160
observability, 158, 170
observation equation, see measurement equation
optimization, 27, 31, 169, 235, 242
starting values, 32, 75, 80, 81
option prices, 225
order-up-to level, 319, 322
outliers, 143, 154, 155
over-dispersion, 288
parameter space, 32, 75, 163, 168, 229
penalized likelihood, 35, 113
see also information criteria
percentage errors, 33
see also MAPE
percentile, 21
point forecasts, 21, 14, 19, 25, 31, 65, 159
prediction intervals, 51, 21, 131, 135, 136, 158, 248
prediction validation, 287, 295
see also forecast mean
Poisson distribution, 287, 289, 292, 294
positive data, 205, 206
prediction distribution, 83, 90, 91
simulated, 84, 89, 135, 138
prediction error decomposition, 192
prediction intervals, 51, 21, 96, 98, 135
prediction validation, 124, 127
QR/upper triangular decomposition, 144
R software, 3
random seed state vector, 187, 216
random walk, 49, 65, 66, 149, 159, 178
reduced form, 96, 98, 134, 261, 263, 301
reachability, 138, 159
reorder level, 319, 321, 322
residual checks, 153, 158
RMSE, 251
root mean squared error, see RMSE
safety stock, 319, 322, 324
sales data, 314–318
scaled errors, 51, 126, 306
see also MASE
Schwarz BIC, see BIC
seasonal adjustment, 19, 121, 139, 140
seasonal levels model, 57, 76, 233
seasonal models/methods, see also double seasonal method, see also Holt-Winters’ method, see also multiple seasonality, see also normalization
fixed seasonality, 73
parsimonious, 57, 76, 235, 325
seas lessality, 18
 seemingly unrelated models, 299
simple exponential smoothing, 14
41, 22, 19, 88, 101, 117, 176, 177
seasonal models/methods, see also local level model
single exponential smoothing, 21
single source of error, see innovations state space models
sMAPE, 34
smooth transition autoregressive models, 337
smoothing time series, 204, 205
software, 3
SSOE state space models, see innovations state space models
stability, 45, 80, 53, 55, 77, 59, 65, 67, 68, 74, 79, 161, 163, 169, 170, 176
standardized variance, 192, 194, 195
198, 199, 201, 205, 216
STAR models, 337
start-up assumptions, see finite start-up assumption, see infinite start-up assumption
state equation, see transition equation
state space models, 14, 15, 25, 31
see also innovations state space models, see also MSOE state space models
state vector, 46, 47, 61, 62
stationarity, 45, 46, 53, 172, 176, 179
180, 189, 192, 206, 222, 288, 329
stochastic lead-times, 189, 192, 206, 222, 288, 329
stochastic trend, 339
stochastic volatility, 334
structural models, 15, 219, 229, 305, 306
sum of squared errors, 77, 192, 193, 201
see also
discounted sum of squared errors
symmetric mean absolute percentage error, see sMAPE
tests of Gaussianity, 154, 155
Theta method, 23, 56
threshold autoregressive models, 339
time series decomposition, 17, 19, 335
time series patterns, 111, 112
time series regression, 145–156
transition equation, 42, 55
transition matrix, 42, 55
transitory component, 336, 338, 339, 342–344
trend, 15, 335, 336, 339
triangular stochastic equations, 193
193, 209, 216
truncated Gaussian distribution, 266
uncertainty
sources of, 18
unstable sample paths, 257
VAL method, see prediction validation
VAR models, 297, 303, 304, 306, 309
VARIMA models, 297, 303, 304, 306, 310
vector error-correction model, 204
vector exponential smoothing, 297, 310
volatility, 268, 334
website, 3
weekly data, 57, 79, 81, 124, 149
282, 284
Wiener processes, 328, 330
Wiener-Kolmogorov filter, 252
Winters’ method, see Holt-Winters’ method
Wold decomposition, 45, 46, 173, 223
338